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Abstract—This paper focuses on decoding the process of face
verification in the human brain using fMRI responses. 2400
fMRI responses are collected from different participants while
they perform face verification on genuine and imposter stimuli
face pairs. The first part of the paper analyzes the responses
covering both cognitive and fMRI neuro-imaging results. With an
average verification accuracy of 64.79% by human participants,
the results of the cognitive analysis depict that the performance
of female participants is significantly higher than the male par-
ticipants with respect to imposter pairs. The results of the neuro-
imaging analysis identifies regions of the brain such as the left
fusiform gyrus, caudate nucleus, and superior frontal gyrus that
are activated when participants perform face verification tasks.
The second part of the paper proposes a novel two-level fMRI
dictionary learning approach to predict if the stimuli observed is
genuine or imposter using the brain activation data for selected
regions. A comparative analysis with existing machine learning
techniques illustrates that the proposed approach yields at least
4.5% higher classification accuracy than other algorithms. It is
envisioned that the result of this study is the first step in designing
brain-inspired automatic face verification algorithms.

I. INTRODUCTION

The processing capabilities of the human brain have fas-

cinated the researchers for the past few decades, leading to

attempts of better understanding and emulating the brain’s

functionality. Specifically, the face recognition capabilities of

humans has motivated researchers for developing intelligent
algorithms for automated matching. Several algorithms, rang-

ing from Gabor transform to deep learning based architectures,

have been proposed, that seek to emulate the complex working

of the human brain [1]–[6].

Parallely, in cognitive neuroscience, researchers have fol-

lowed independent research directions to understand brain

functioning by means of behavioral (cognitive) and sense

based approaches such as electroencephalogram (EEG) and

functional magnetic resonance imaging (fMRI) [7]. In experi-

ments pertaining to face recognition, researchers have focused

on understanding face perception and brain areas which are

responsible for such tasks. For instance, researchers have

tried to unravel the face discrimination abilities present in

newborns and monkeys [8]. It has also been established that

fusiform gyrus and lingual gyrus are responsible for face

perception [7], [9], [10]. Similarly, cognitive neuroscientists

have demonstrated that humans have innate capabilities for

recognizing familiar faces even in the presence of moderate

disguise, makeup, and occlusion [11]–[13]. These results have

aided the biometrics (face) research community to develop

novel algorithms for challenging tasks such as plastic surgery

[14], [15] and unconstrained face recognition [5].

In order to move closer to building brain-inspired algorithms

for face recognition, it is required to understand various facets

of brain processing. There are several questions that require

exploration; questions related to the processing capabilities

of the human brain and the task of face recognition. For

instance, (i) what regions are involved for face perception,

(ii) what ancillary information is required for the task of face

recognition, (iii) what is the effect of familiarity, memory,

gender, and race for the task of face recognition, and (iv) how

the brain processes genuine and imposter face pairs1. Tradi-

tionally, experimental design in cognitive neuroscience studies

focus on self face recognition, familiar face recognition, or kin

face recognition [16]–[19]. Such studies show that significant

progress has been made to comprehend face perception in

general and establishing brain regions responsible for face

perception. Further, researchers have studied the effect of

ancillary information on face recognition [20]. However, to

the best of our knowledge, this research is the first work

which attempts to understand the functioning of the brain for

processing genuine and imposter pairs, i.e. face verification
task, given familiar and unfamiliar faces. Decoding regions

of activations and corresponding models for such a task

can help face recognition researchers in developing improved

algorithms. This paper focuses on this particular aspect of face

verification and presents the following contributions:

• Design cognitive neuroscience experiments to observe

brain activations while the participant is performing a face

verification task. This is the first cognitive neuroscience

experimental design for the same. While designing the

experiment, special attention has been paid to suppress

activations by memory recall.

• Propose a novel machine learning based approach to

predict if the stimuli observed are genuine or imposter

using fMRI data only. This approach is the first step in

designing a brain-like face verification algorithm.

1Given a pair of face stimulus images, if both images correspond to the
same subject, the pair is considered genuine; otherwise it is considered as
imposter.
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Fig. 1: (a) Sample stimuli for genuine and imposter pairs; (b) protocol for face verification task. The response time is marked

in red and the maximum limit on response time is 2.5 seconds (red arrow). The screen turns blank after the participant provides

response till 4.5 seconds before the next stimulus is shown.

II. NEUROCOGNITIVE STUDY

Individuals perform face recognition innumerable times dur-

ing their daily life. In most cases, it is an effortless task which

is performed with utmost ease. However, researchers are yet

to completely understand the intricacies of neural processing

when a face is seen. This research aims to investigate the

neural correlates of face verification (by one-to-one matching)

using functional magnetic resonance imaging (fMRI). fMRI

is a non-invasive neuroimaging technique which uses the

relationship between brain activity and the local cerebral blood

flow. Oxygen concentration in the blood is used as an indirect

marker of the underlying neuronal activity in the brain; termed

as the Blood Oxygenation Level Dependent (BOLD) signal.

Researchers have been using fMRI scans and studying these

BOLD signals to understand brain functioning [16], [18], [21],

[22]. In this study, we try to decode the neuronal activity in

the brain while performing face verification task (i.e. given

a pair of face images, identify whether the pair is genuine

or imposter). Participants are presented with a pair of face

image stimulus and are required to decide whether the given

pair of images belong to the same individual or not. Once

the data is collected, responses are analyzed in terms of both

cognitive or behavioral analysis and neuroimaging results. We

further present the details about the data collection procedure,

experimental protocol, and the results obtained.

A. Data Collection

Due to the unavailability of fMRI datasets in the literature

which involve matching faces side-by-side, we collected data

for the task of face verification. The data collection process

involved the creation of task-specific stimuli, formulation of

an experimental design, selection of participants and collection

of fMRI scans, details of which are given below.

1) Experimental Design: The paradigm used in the fMRI

experiment is an event-related face-matching task. Each stim-

uli consisted of gray scale images of face pairs displayed side

by side where background noise (non-face area) is suppressed

by applying an oval mask as shown in Fig. 1 (a). When view-

ing the stimulus, the participants were instructed to respond

“Yes” if they thought the face-pair belongs to the same person

and “No” otherwise, using a controller provided to them.

Each face-matching task is performed in a segment of 4.5

seconds where one stimulus pair is shown per segment. As

shown in Fig. 1(b), in each segment, the first image of the pair

is shown for the initial 1 second, followed by both the images

being displayed, for a maximum of 2.5 seconds. Participants

responded within these 2.5 seconds. As soon as a response is

recorded, a blank black screen is displayed for the remaining

4.5 seconds segment and is treated as the Inter-Stimuli Interval

(ISI). This functions as the resting phase (baseline) between

each stimuli.

The entire experiment consisted of 4 fMRI runs with 60

segments in each run, making a total of 240 face-pair stimuli.

No face-pair stimuli were overlapping across the different runs.

Out of the 240 stimuli, 135 pairs are genuine (match pairs)

and 105 pairs are imposter (non-match pairs). Face-pair stimuli

were created using the images from popular face databases.

2) Participants: The study is performed on a total of 10

healthy subjects (5 males and 5 females) in the age group of

20-27 years. The subjects were briefed on the experimental

design, type of stimuli, and the task before the data collection

process. All subjects provided written consent to be a part of

the study. The study has been approved by IIIT-Delhi Ethics

board.

3) fMRI Data Acquisition: The imaging sequence is an in-

terleaved T2*-weighted gradient echo sequence (from negative

to positive direction) with 35 axial slices (slice thickness =
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3.5 mm, slice spacing = 0.0 mm, repetition time (TR) = 2.0

seconds, echo time (TE) = 30 ms, flip angle = 650, field of

view (FOV) = 224 mm, matrix = 64×64) and 128 volumes

are captured per run (each volume is captured in 2 seconds

with no gap of time between volumes) on a 3T GE Machine.

Anatomical structural scan for each subject is acquired using

structural MRI scans. These scans are T1-weighted sequence

with 172 sagittal slices in interleaved sequence (slice thickness

= 1 mm, TR = 600 ms, flip angle = 100, field of view = 224

mm, matrix = 256×256).

B. Data Analysis and Results

In this section, the genuine-imposter responses provided

by the participants during the fMRI task are analyzed. As

explained above, the experimental protocol required the par-

ticipants to perform face verification, i.e. verify whether a

given stimulus, belonged to the same individual or not. With

240 stimuli and 10 participants, a total of 2400 responses

are collected. We observe the correct verification accuracy2

of 64.79% across all participants. Upon further analysis,

female participants correctly verified face stimuli with 67.17%

accuracy as compared to 62.41% by male participants.

TABLE I: Confusion matrix for the behavioral responses for

the face verification task. Performance for all participants,

male participants, and female participants are reported sep-

arately.
Response Label

All
Actual
Label

Genuine Imposter

Genuine 66.22% 33.56%
Imposter 36.88% 62.95%

Males
Actual
Label

Genuine Imposter

Genuine 63.26% 36.31%
Imposter 38.79% 61.21 %

Females
Actual
Label

Genuine Imposter

Genuine 63.55% 36.45%
Imposter 27.27 72.32 %

Table I shows the confusion matrix in terms of actual label

and response label for all 10 participants, as well as gender-

wise results. It is important to note that due to some stimuli

on which no response was given by the participant, the values

across each row might not add up to a 100%. Intrigued by the

variations in the true positive and true negative values from

the confusion matrix, we further analyzed the performance of

male and female participants on genuine and imposter pairs

separately. For genuine pairs, male participants provided true

positive accuracy of 63.26% and females provided 63.55%

accuracy. However, it is interesting to observe that in case of

imposter verification, females yield 72.32% and males yield

61.21% true negative rates, respectively.

2The accuracy is calculated as:

Accuracy = 100× (TP + TN)

(TP + TN + FP + FN)
(1)

where TP , TN , FP , and FN represent the number of true positives, true
negatives, false positives, and false negatives respectively.

To verify the statistical significance of the results, one-tailed

z-test of proportions is applied with a significance level of 0.01

on the classification accuracy, TPR and TNR between males

and females. A p-value of 0.0073 is obtained for accuracy

comparison in favor of females performing better face verifica-

tion as compared to males (67.17% over 62.41%). A one-tailed

z-test of proportions on the true positive rates of both genders

does not yield any statistical difference. However, a p-value

of 0.0001 is observed for comparison of true negative rates

of males (61.21%) and females (72.32%). This demonstrates

the statistical significance of females performing better in

determining imposters as compared to males.

The fMRI scans are also analyzed in terms of neural

activations. fMRI scans require detailed pre-processing before

they can be used to model the haemodynamic response.

Preprocessing and analysis of the fMRI data was performed

using the software Statistical Parametric Mapping (SPM 12;

Wellcome Department of Cognitive Neurology) [23] with

MATLAB R2016b. The pre-processing pipeline is as follows:

• Slice-time correction: All the functional volumes were

slice time corrected to assign all the slices within a single

volume to the same time point.

• Re-alignment: It was done to eliminate within-subject

motion artifacts. The first image volume was used as the

reference volume and all the other time series images

within the subject were aligned with respect to the

reference image using a least square minimization and

a 6-parameter (rigid body) spatial transformation.

• Co-registration: Generally, structural scans are high res-

olution scans of the brain which provide a detailed

structure of the organ. As compared to structural scans,

functional scans do not have as much information. In

this step, to maximize the information about the structure

of the brain, the functional scans are projected onto the

structural scans.

• Segmentation: All images are segmented into gray matter

and white matter. This is done so as to extract the relevant

voxels for analysis.

• Normalization: Since the brain shape and size of each

individual is different, the pre-processed images are then

aligned to a standard template space so as to perform

inter-subject registration of scans using the MNI (Mon-

treal Neurological Template) [24] space.

• Smoothing: A Gaussian kernel with the width of 4mm is

used to remove any noise present in the images.

After pre-processing the data, the BOLD signal is modeled

and activations in the brain are observed. We performed

linear contrast using General Linear Model (GLM) framework

over the pre-processed data to produce Statistical Parametric

Map (SPM) of the effect of matching two face images. For

each subject, a first level model was created and patterns of

significant activation associated with face verification were

identified by appropriately weighting the estimated model

using simple T-contrasts (face verification > baseline) and

statistical parametric maps (t-maps) and contrast images were
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Fig. 2: Activations observed for the task of face verification at p ≤ 0.001. The cross-hair points at the global maxima

(x = 12, y = −74, z = 4).

TABLE II: MNI co-ordinates (x, y, z) of the peak activations,

observed during the task of face verification, over all the

participants. z-scores corresponding to the activations for

p ≤ 0.001 (uncorrected) are also reported.

MNI coordinate of
peak activation Brain Region z-score
x y z
12 -74 4 Calcarine Sulcus (right) 5.26

10 -80 -10 Lingual Gyrus (right) 4.76

18 -16 14 Caudate (right) 4.69

-4 -2 64
Supplementary Motor
Area (left)

4.69

-28 -48 20 Fusiform Gyrus (left) 4.57

-44 -14 54 Postcentral Gyrus (left) 4.41

-32 -16 -6 Putamen (left) 4.21

8 32 40
Superior Frontal Gyrus,
Medial (left)

4.17

28 -52 46 Angular Gyrus (right) 4.16

-20 -32 0 Hippocampus (left) 4.11

-6 -16 -10 Thalamus (left) 3.99

generated for the whole brain. Group level analysis was

performed by computing one-sample second level t-statistic

(GLM random effects analysis) using the contrast images

across all subjects and a statistical parametric map of the effect

of matching two face images was generated, thresholded at

p ≤ 0.001.

Table II presents detailed coordinates, corresponding brain

regions and z-scores and Fig. 2 depicts the activations observed

at the given p-value at the global peak. The analysis revealed

significant activations in the areas of calcarine sulcus, where

the primary visual cortex is concentrated, lingual gyrus (part

of occipital lobe), which is responsible for visual processing,

and fusiform gyrus. These results agree with previous studies

which have shown the existence of face-selective regions in

the fusiform gyrus and anterior inferotemporal cortex [7], [25].

Significant activations are also observed in the left fusiform

gyrus, which is responsible for detecting face-like features.

Similar activations in the areas of hippocampus, caudate,

postcentral gyrus, and superior frontal gyrus are observed

during recognition of famous faces [26]. Activations in the

areas of thalamus and angular gyrus assert that the participants

were alert and attentive to the stimuli [27].

The observations obtained from the neuroimaging experi-

ment are in accordance with existing literature. The activation

of meaningful regions responsible for visual processing and

face perception motivate us to further explore the information

from the fMRI brain scans. The following section presents a

novel learning based approach to predict the stimulus viewed

by a participant for a given fMRI scan.

III. NEURAL PATTERN BASED FACE STIMULI

CLASSIFICATION BY TWO-LEVEL FMRI DICTIONARY

PAIRS

Recently, machine learning algorithms have been developed

to decode the cognitive state of the subject which are useful for

various applications such as depression detection [28], emotion

identification [29], word pronunciation [30], and lie detection

[31]. By considering the neural activity measured at different

locations, machine learning techniques help in discovering

patterns for automated analysis and model design [32]. Several

studies in the literature have also focused on exploring the

areas of activation in the brain during the face perception task

[33], [34]. On the other hand, the quantifiable localizations

of patterns of neural activity have gained fairly less attention,

particularly as a way of decoding the cognitive state.
In this section, the emphasis is on the inverse problem of

classifying the stimulus for a given fMRI scan, i.e. predicting

the stimulus as genuine or imposter face pair. It is our belief

that there is an inherent difference in the brain’s functional

network while processing genuine face pairs as compared

to imposter face pairs. Hence, the aim is to utilize machine

learning techniques to design a framework which can decode

whether the face pairs seen by a human subject are genuine or

imposter. As shown in Fig. 3, the proposed framework involves

selection of scans for stimuli pairs and regions of interest

(ROIs) based mask generation. This is followed by face-

specific and decision-specific ROI-based feature extraction.

Dictionary pairs are trained for each ROI and combined to

learn two-level dictionary pairs. This two-level dictionary

framework is designed to learn features of each specific

brain area as well as a cumulative representation of regions

involved in face processing and decision making. The last

step is decision-level fusion of outputs from face-specific and

decision-specific fMRI dictionary pairs to obtain the final

prediction. These steps are explained in detail below.
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Fig. 3: Proposed two-level fMRI dictionary based framework which involves fusion of information from face-selective and

decision-selective regions of the brain in hierarchical manner. In the first-level, ROI based synthesis and analysis dictionary pairs

(Si, Ai) are trained to model representations through sparse signals pertaining to the region. In the second-level, dictionaries

are trained on the concatenated output from first-level to process the information from face-specific and decision-specific brain

areas holistically.

A. Selection of fMRI Scans for Stimuli Pairs

As described in the previous section, fMRI responses are

collected while the subject is viewing genuine or imposter

face pair. The fMRI scans corresponding to the two types

of stimuli are labeled and separated into the two classes for

each participant. Due to the nature of images being presented

sequentially, confounding scans that may have huge overlaps

in the BOLD response with respect to different stimuli are

removed.

B. Mask Generation of Face-selective and Decision-selective
ROIs

The dimensionality of fMRI data is very high; for example,

a scan with 35 slices of the human brain with a resolution of

64 × 64 during one time-stamp leads to a feature vector of size

143,360. Therefore, creating masks to reduce the dimensional-

ity and redundancy is a crucial task before analyzing the fMRI

data. Based on the type of stimulus presented to the participant,

there are two different approaches for mask creation to classify

a given fMRI scan. Both approaches have their respective

advantages and disadvantages. In the first approach, the fMRI

data from the entire brain (removing the non-brain regions)

is taken into account for computational purposes [29], [31].

This approach accounts for less apriori knowledge regarding

functionality of brain regions. However, the data collected

from the brain is complex and takes into account multiple

interactions of different regions. Also, it often leads to over-

fitting due to the high dimensionality of the data. In the second

Fig. 4: Fusiform Gyrus (row 1) and Lingual Gyrus (row 2)

masks generated for the Regions of Interest (ROIs). The un-

derlying anatomical brain image is for representation purposes

only.

approach, analysis is restricted to specific Regions of Interest

(ROIs) chosen from the literature that reduces the dimensions

of the data and may lead to better discrimination [35], [36].

Information from each region of interest is computed to form

local features, which are robust to inter-subject functional

distinctions within the brain.

In this paper, a fusion of ROI-based features is proposed

for combining different information sources to yield better

discriminability for classifying stimulus pair as genuine or
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imposter, given an fMRI scan. Based on previous studies,

two groups of ROIs are chosen. Face-specific brain regions

are related to face perception and processing. In this group,

the included brain areas are calcarine sulcus [37], fusiform

gyrus [33], [38], lingual gyrus [39], [40], and occipital lobe

[41]. The fusiform gyrus contains the fusiform face area that

is associated with face perception and face recognition while

the lingual gyrus is associated with complex visual processing

[42]. Likewise, regions involved in decision making process

(decision-specific) are selected to form the second group. ROIs

included in this group are angular gyrus [43], hippocampus

[44], medial frontal [45], and superior frontal gyrus [46].

These regions are also observed in the neural activations

seen in Table II which further strengthens the motivation for

selection of these areas. In order to extract these ROIs from

each scan, anatomical masks are created using the Automated

Anatomical Labeling (AAL) atlas [47]. They are resized and

updated according to the data obtained from the ten subjects

of the study. Fig. 4 illustrates the sample anatomical masks

generated for two ROIs: fusiform gyrus and lingual gyrus.

C. Encoding fMRI signals using Two-level Dictionary Pairs

Neural representations are extracted for face-selective and

decision-selective ROIs by applying the anatomical masks

computed in the previous step. It has been found that sparse

neurons do not respond to the input independently and encode

specific concepts together [48]. Thus, learning dictionaries that

encode a sparse basis representation of the input data, are

a natural way to represent fMRI signals. Vast literature is

available that utilizes sparse coding and dictionary learning

to analyze the fMRI activations [49], [50]. In this paper,

an fMRI dictionary pair framework is utilized to learn the

intrinsic properties of the fMRI signals and encode them

according to the external stimuli shown and decision made

by the participant.

Gu et al. [51] introduced the Dictionary Pair Learning

(DPL) framework, where two dictionaries are jointly trained

to learn representations through linear projection. These two

dictionaries are termed as analysis and synthesis dictionary and

together encode the discriminative information present in the

input vector and its reconstruction. The model can be described

as:

{A∗,S∗} = argmin
A,S

K∑

k=1

|| X k − SkAkX k ||2F

+ γ || AkX̄ k ||2F , s.t || di ||22≤ 1 (2)

where, S represents the synthesis dictionary used to recon-

struct the input matrix X ; A represents the analysis dictionary

used to encode input X ; Ak and Sk represent the sub-

dictionary pair corresponding to class k; X̄k represents the

complementary data matrix of X k in the training set; γ>0 is

a scalar constant that denotes the regularization parameter to

control the discriminative property of A, and di denotes the

ith item of synthesis dictionary S. The role of the analysis

dictionary A is to help in discrimination, where the sub-

dictionary Ak can project the samples from class i, i �= k

to 0. The role of the synthesis dictionary S is to minimize

the reconstruction error. The above framework enforces group

sparsity on the input matrix using the analysis dictionary A but

does not utilize the time consuming l0 or l1 norm computation.

To learn a discriminatory model for distinguishing between

genuine and imposter stimuli using fMRI scans, fMRI dic-

tionary pairs Si, Ai (where i = 1 . . . 8) are learned for each

ROI. These first-level dictionaries encode the individual ROI-

specific features. The reconstructed outputs (Ri) from the

learned dictionaries are concatenated to form inputs to face-

specific and decision-specific fMRI dictionary pairs. There-

fore, the input to second-level face-specific dictionary (Dface)

is [R1, R2, R3, R4] corresponding to calcarine sulcus, fusiform

gyrus, lingual gyrus, and occipital lobe. Likewise, the in-

put to second-level decision-specific dictionary (Ddecision)

is [R5, R6, R7, R8] corresponding to angular gyrus, medial

frontal gyrus, superior frontal gyrus, and hippocampus. These

second-level dictionaries learn cumulative features of face-

specific and decision-specific brain areas in a hierarchical

fashion. The classification outputs from the second-level face-

specific dictionary pair (Dface) is labeled as Yface while

second-level decision-specific dictionary pair (Ddecision) is

labeled as Ydecision.

D. Decision-level Fusion of Second-level fMRI Dictionary
Pairs

In the proposed framework, decision-level fusion is utilized

to combine the dictionary pair classification outputs Yface and

Ydecision. For integrating the information represented by the

learned dictionary pairs, the final classification, Youtput of an

fMRI scan into genuine or imposter stimuli is performed by

applying a logical AND on the individual decisions.

Youtput = Yface ∧ Ydecision (3)

IV. EXPERIMENTS AND ANALYSIS

In this experiment, unseen training and testing partitioning

is performed with five-fold subject-based cross validation.

Hence, in each fold, scans of eight subjects are used for train-

ing and testing is performed on the remaining two subjects.

Eight anatomical masks corresponding to the face-selective

ROIs (R1: calcarine sulcus, R2: fusiform gyrus, R3: lingual

gyrus, and R4: occipital lobe) and decision-selective ROIs (R5:

angular gyrus, R6: hippocampus, R7: medial frontal gyrus, and

R8: superior frontal gyrus) are computed followed by feature

extraction from these ROIs. fMRI dictionary pairs are learned

for each of these regions. The reconstructed samples using

the dictionary pairs from face-selective ROIs are concatenated

to form dictionary pair Dface to yield genuine vs imposter

pair classification. The same step is followed with decision-

selective ROIs to generate the dictionary pair Ddecision. The

predictions from the two fMRI dictionary pairs are combined

at the decision-level to obtain the final classification output.

The experiments are run on a Linux machine with Intel Core

i7-4770 CPU @ 3.40GHz and 32 GB memory. The key

findings from the experimental results are explained below.
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TABLE III: Stimuli classification accuracy using decision-

level fusion of ROI-based machine learning algorithms.

Machine Learning Technique Accuracy (%)
Linear Discriminant Analysis 48.48
Decision Trees 49.27
Neural Network 51.30
Naive Bayes 54.82
Proposed Two-level Dictionary 59.35

• The average five-fold classification accuracy obtained

using the proposed two-level fMRI dictionary pair frame-

work is 59.35% which is ≈ 4% less than classification

performance by human subjects. This indicates the ex-

istence of separable and discriminatory cognitive states

corresponding to the type of face stimuli presented to the

participants.

• To demonstrate the effectiveness of the proposed frame-

work for this problem, comparison has been drawn with

other commonly used machine techniques such as Naive

Bayes, Linear Discriminant Analysis (LDA), Decision

Tree, and Neural Network as tabulated in Table III. It

is observed that the proposed two-level fMRI dictionary

learned framework outperforms other techniques by at

least 4%. The lower classification accuracies obtained by

other machine learning techniques illustrate the challeng-

ing nature of the classification problem.

• The training time for the proposed two-level fMRI dictio-

nary pair framework (consisting of ten dictionary pairs)

is also analyzed. In total, the first-level dictionary pairs

training took 1.04 seconds as compared to 1.45 seconds

by the second-level dictionary pairs training.

• Comparative analysis is performed with one-level fMRI

dictionary pairs computed from the features of the whole

brain. The classification accuracy with this approach is

52.80%. This demonstrates the efficacy of a region-wise

approach over less discriminatory features from the full

brain region.

• Region-specific analysis is also performed to gain better

insight of the obtained results. When classification is per-

formed by dictionary pairs of face-selective and decision-

selective ROIs separately, classification accuracies of

57.60% and 53.98% are observed, respectively. These

results suggest that (i) the effect of individual ROIs might

not be sufficient to understand the complex functionality

of the brain and (ii) activations corresponding to the

different brain areas need to be modeled to understand

the functionality of the brain as a whole.

V. CONCLUSION

The visual processing performed by the human brain is in-

herently complex which has intrigued the research community.

The fusiform face area (FFA) is known to be involved in face

perception and recognition. At the same time, researchers have

successfully developed automatic face verification algorithms

that can match face images. In this paper, we bridge the gap

between both of these areas by exploring the process of face

verification through fMRI data analysis. A total of 2400 fMRI

responses with genuine and imposter stimuli pairs for a novel

face verification task are collected from 10 participants. The

neural activations due to the face verification task are analyzed.

Brain areas belonging to visual and face processing such as

fusiform gyrus, lingual gyrus and calcarine are significantly

activated at p ≤ 0.001. It is also observed that female partici-

pants are able to identify imposter pairs significantly better

than male participants. Based on the neuroimaging results,

a novel two-level fMRI dictionary learning based framework

with face-specific and decision-specific regions of interest is

proposed to predict the type of stimuli (genuine or imposter)

shown to the participants during the fMRI scans. Classification

accuracy of 59.35% is observed using the proposed framework

and comparative analysis is also performed with other machine

learning techniques. We observe that the difference in the

classification accuracy of humans and the proposed framework

is only 4%. It is our belief that understanding the human

visual system will play a crucial role in creating stable and

accurate automatic face verification models, and this study is

the first step towards that direction. In future, we aim to extend

the neuroimaging analysis using fMRI activations obtained

with corrected thresholds and further incorporate sophisticated

techniques for noise removal from the signals.
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