
Understanding Neural Responses to Face
Verification of Cross-Domain Representations

Maneet Singh1, Shruti Nagpal1, Daksha Yadav2, Naman Kohli2, Prateekshit Pandey3, Gokulraj Prabhakaran4
1IIIT-Delhi, India; 2West Virginia University, USA; 3University of Pennsylvania, USA; 4Otto-von-Guericke University, Germany

Email: {maneets, shrutin}@iiitd.ac.in, {dayadav, nakohli}@mix.wvu.edu, prateekshit.pandey@asc.upenn.edu

Richa Singh5, Mayank Vatsa5, Afzel Noore6, Julie Brefczynski-Lewis2, Harsh Mahajan7
5IIT Jodhpur, India; 6Texas A&M, Kingsville, USA; 7Mahajan Labs, India

Email: {richa, mvatsa}@iitj.ac.in, Afzel.Noore@tamuk.edu, jblewis@hsc.wvu.edu

Abstract—Face verification involves identifying whether two
faces belong to the same person or not. It relies heavily upon
face perception, processing, and the decision making of an
individual. This research studies cross-domain face verification,
where one face image belongs to a controlled, well-illuminated
environment, while the other is of a varying representation
having differences in image type or quality. Specifically, two
cross-domain face verification tasks are analyzed: controlled-
low resolution and controlled-sketch face verification. functional
Magnetic Resonance Imaging (fMRI) data has been collected
for 23 participants of two ethnic groups while performing
face verification. Statistical comparisons were performed with
same-domain controlled face verification for both the tasks.
Our findings reveal regions of Right Frontal Gyrus, Bilateral
Insula, and Right Middle Cingulate Cortex demonstrating higher
activation for controlled-sketch face verification, as compared
to controlled face verification. Similar analysis were performed
for controlled-low resolution face verification, where regions
responsible for higher visual load and difficult tasks result in
higher activation. Further, stimuli ethnicity differences influence
activations for low-resolution face verification but do not affect
sketch face verification. Regions of Right Middle Occipital Gyrus
and Right Fusiform Gyrus present higher activity, suggesting
increased face processing effort for within ethnicity low resolution
face verification. We believe the findings of this research will help
enable further development in the field of brain-inspired facial
recognition algorithms.

Index Terms—Face Recognition, fMRI, Neural Responses

I. INTRODUCTION

It has long been established that humans possess an ex-
ceptional ability to perform face processing [1]–[3]. Coupled
with decision making, we are also able to carry out face
verification with utmost ease and precision. Face verification
refers to the task of matching two face images and deciding
whether they belong to the same person or not. As shown
in Fig. 1(a), the past couple of decades have seen studies
aimed at understanding the functioning of the human brain
for processing and recognition of objects and faces [4]–[9].
Existing literature has identified regions of Fusiform Face
Area (FFA), Occipital Face Area (OFA), and face-selective
region in the Superior Temporal Sulcus (fSTS) to have higher
activations for face perception and recognition [10]–[15].
Research has also focused on understanding the human brain

(a)

(b)

Fig. 1: (a) Research has focused on understanding how hu-
mans perform (i) face perception, and (ii) controlled face
verification. This research analyzes how humans perform
(iii) cross-domain face verification in comparison with (ii)
controlled face verification. (b) Timeline of two sample stimuli
presented to the participants. The face images in the figure
are representative of the stimuli used in the experiment. The
images belong to the co-authors of this paper who have given
informed consent to use these images for publication purposes.

behavior while performing face recognition under different
conditions/covariates such as familiar faces (or kinship) [16],
[17], inverted faces [18], [19], emotion [20], [21], self [22],
and other-race effect [23], [24].

While research has extensively focused on understanding
the neural correlates behind face perception or recognition,

978-0-7381-3366-9/21/$31.00 ©2021 IEEE

20
21

 In
te

rn
at

io
na

l J
oi

nt
 C

on
fe

re
nc

e 
on

 N
eu

ra
l N

et
w

or
ks

 (I
JC

N
N

) |
 9

78
-1

-6
65

4-
39

00
-8

/2
1/

$3
1.

00
 ©

20
21

 IE
EE

 |
 D

O
I: 

10
.1

10
9/

IJC
N

N
52

38
7.

20
21

.9
53

42
42

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on June 22,2025 at 08:32:26 UTC from IEEE Xplore.  Restrictions apply. 



face verification has primarily been explored via behavioral
studies [25]–[27]. For the task of face verification, the ex-
isting neuroimaging studies focus on controlled and same-
domain face images only [28]–[30]. Here, controlled refers
to regular high quality face images matched in low-level
stimulus features such as luminance and contrast, captured
in good illumination, often in frontal pose. Same-domain
refers to the scenario where both the images are captured in
similar settings, resulting in similar face representations. In
real world scenarios, two face images are rarely captured in
a controlled environment, thereby resulting in a pair of face
images having different representations from two domains.
Such situations result in a need for cross-domain face ver-
ification, where one domain contains face images captured
in controlled environment, while the other domain contains
face images of a varying representation. For example, law
enforcement personnel often require matching low resolution
face images (captured in surveillance scenarios) with high
quality mugshot images. In another scenario, the sketch face
image of a wanted person (generated based on an eyewitness
description) is often required to be matched against the high
quality mugshot images.

Both the situations require humans to perform cross-domain
face verification in order to identify possible suspects. Such
scenarios are further characterized by the same-ethnicity or
different-ethnicity pairing of the investigating officer and the
person under investigation. In the literature, researchers have
performed behavioral studies on cross-domain face verification
[31]–[33] or behavioral studies on varying representations
[34], however, to the best of our knowledge, no existing
research attempts to understand the functioning of the human
brain for the said task. Research has also focused on the
own-race effect for face recognition [23], however, no studies
exist for understanding the human behavior for cross-domain
face verification with respect to the ethnicity pairings. This
leads to the main contribution of this study: understanding
the functioning of the human brain while performing cross-
domain face verification. Matching controlled face images
with low resolution face images and face sketches can be
more challenging than matching with other controlled face
images. While low resolution images lack high frequency
components and facial contours, sketch face images require
thinking about abstract facial features to match them with real
face images. Thus, while low resolution face verification and
sketch verification are both challenging, they are likely to elicit
different cognitive processing on top of face image processing.
Specifically, we expect respondents to engage in more high
level visual processing of the images for low resolution face
verification, and in more high level cognition for sketch face
verification. In this exploratory study, we hypothesize that the
differences in the underlying psychological processes would
reflect in the brain activity in response to different face
verification tasks. Specifically, we test our hypothesis that the
human brain performs cross-domain face verification differ-
ently from same-domain controlled face verification. Further,
we hypothesize that the neural activity for face verification

varies with varying face representations, and are affected by
the ethnicity pairing of the self and the stimuli.

It has been observed that face verification relies less on the
memory of the participant and more on the matching ability
[35]. It mimics the real world scenarios where security per-
sonnel are often required to match an individual with his/her
photograph on their identity proof document. In this study,
participants were required to verify whether two given images
belong to the same individual or not, while their brain activity
was simultaneously being recorded using functional MRI.
The face images constituting the stimuli belong to different
face representations, namely low-resolution and sketch face
images. As a part of this work, we analyzed how processing
of cross-domain images differs from processing of same-
domain face images of good quality, while performing the
task of verification. It is observed that as compared to good
quality face images captured in controlled, well-illuminated
environment (termed as controlled, hereon), sketch image ver-
ification results in activation of regions associated with object
processing tasks. Face sketch images are processed similar to
high frequency information, whereas no such observation can
be made for low resolution face images. Both the tasks are
attributed as complex tasks. The effect of stimuli-participant
ethnicity pairing is also analyzed for the two cross-domain face
verification tasks, where a difference in processing is observed
for low resolution face images, however, the verification of
sketch face images remains unaffected. The current research
extends the current pool of literature by providing novel
insights into the functioning of the human brain while perform-
ing cross-domain face verification. Further, the results obtained
as part of this research may also enable the development of
novel human brain-inspired facial recognition algorithms.

II. EXPERIMENTAL DESIGN

A. Subjects

23 participants (11 Caucasian and 12 Indian) took part in
this study (12 females and 11 males) within the age range of
18-40 years having normal or corrected-to-normal vision. All
participants gave an informed written consent for this study,
which has been approved by the IIIT-Delhi Ethics board and
the West Virginia University Institutional Review Board.

B. Task and Stimuli

Each participant was shown a pair of face images (stimulus)
and was asked to perform the task of face verification. Using a
response button, the participant had to respond whether the two
images presented belonged to the same person (genuine) or
different persons (impostor). The entire experiment consisted
of three runs, where each run consisted of 60 stimuli. Each
run begins with the user fixating on the screen, which is
followed by the presentation of the first image for the first
stimulus, for 1 second. Following this, the second image is si-
multaneously displayed beside the first image for 2.5 seconds.
The participant is expected to give their response (genuine or
impostor) during this time via the controller. As soon as the
participant responds, the screen turns blank for the remaining
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time of 2.5 seconds. This is followed by a blank screen
for another second, thereby resulting in jittered inter-stimuli-
interval. Fig. 1(b) presents the timeline of one stimulus. This
cycle is repeated 60 times for a run. The face images in Fig.
1(b) are representative of the stimuli used in the experiment.
These images belong to the co-authors of this paper who have
given informed consent to use these images for publication
purposes. There are three categories of face image pairs shown
to a participant, two for cross-domain face verification and one
for same-domain verification: (1) controlled-low resolution: a
regular face image captured in a controlled setting and a low
resolution face representation, (2) controlled-sketch: a regular
face image captured in a controlled setting and a sketch face
representation, and (3) controlled-controlled: two regular face
images captured in controlled settings. Each participant was
shown 60 pairs for each category. For the face verification
task, the pair of stimulus face images can belong to the same
person (genuine) or different persons (impostor).

C. Stimuli Creation and Pre-processing

Most of the stimulus face images are collected from publicly
available face datasets [36], [37], while some images are col-
lected from the Internet as well. Each participant’s familiarity
response to the stimuli shown was also recorded, in terms of
the participant being familiar with the face stimulus. Since
only Indian and Caucasian subjects participated in this study,
the stimuli also had only Caucasian and Indian ethnicities,
with a 70-30% split. The CSU toolbox [38] is used for
pre-processing the face images to remove extra artifacts by
covering the background, such that only the face region is vis-
ible to the participants. The interface for stimuli presentation
and response collection was created using the PsychToolbox
(http://psychtoolbox.org/) and MATLAB platform.

D. fMRI Data Acquisition

Structural and functional MRI scans were collected using
a 3 Tesla Siemens and 3 Tesla General Electric MRI scanner
(for Caucasian and Indian participants, respectively) with a
32 channel head coil. The functional scans (T2*-weighted
MRI) were collected using a gradient echo sequence, from
the negative to positive direction, with 35 axial slices (slice
thickness = 3.5mm, slice spacing = 0.0mm, repetition time
(TR) = 2.0 seconds, echo time (TE) = 30ms, flip angle = 650,
field of view = 224mm, matrix = 64×64). 128 volumes were
captured per run, with no time gap between two volumes.
High resolution anatomical scans were also collected for each
subject. The T1-weighted sequences consist of 172 sagittal
slices in interleaved sequence (slice thickness = 1mm, TR =
600ms, flip angle = 100, field of view = 224mm, matrix =
256×256).

E. Data Analysis

Pre-processing and voxel-based analysis of the fMRI data
has been performed using the Statistical Parametric Mapping
toolbox v12 [39]. As part of pre-processing, slice time cor-
rection and realignment is performed on all the scans such

that each subject’s scans are spatially aligned with their first
scan. This is followed by normalization and co-registration,
where all subjects’ scans are mapped onto a common T2*
template, in order to eliminate the structural variations between
subjects. Finally, spatial smoothing is applied by using a
Gaussian kernel having a width of 8mm at Full Width at
Half Maximum (FWHM) [40], [41]. A General Linear Model
(GLM) is fitted on the pre-processed data for all subjects with
the six motion parameters regressed out and the predicted time
series model was convolved with a canonical Haemodynamic
Response Function. This is followed by group-level random
effects analysis for the given experiment.

As mentioned previously, this study attempts to understand
the human brain behavior for cross-domain face verification
when controlled face images are compared with low reso-
lution or sketch based face representation. Two sample t-
tests are performed on the imaging data to draw comparisons
between brain activity during cross-domain and controlled
(same-domain) face verification tasks, along with between the
two cross-domain tasks. Furthermore, conjunction analysis is
performed to explore brain regions which show activations
during both cross-domain and controlled face verification
tasks, as well as during both cross-domain tasks.

Analysis is also performed to understand the effect of
ethnicity for the two cross-domain face verification sce-
narios. For a Caucasian participant, a stimulus containing
face images of Caucasian ethnicity creates a same ethnicity
stimulus-participant pair, while a stimulus containing face
images of another ethnicity results in a different ethnicity
stimulus-participant pair. Similarly, same and different eth-
nicity stimulus-participant pairs are created for the Indian
ethnicity participants. For each kind of face representation
(sketch and low resolution) two contrasts are analyzed, same-
ethnicity > different-ethnicity, and different-ethnicity > same-
ethnicity. Behavioral analysis has also been performed for
all the experiments to evaluate the participants’ performance.
Processed data used in this study can be obtained from the
corresponding author upon request.

III. BEHAVIORAL RESULTS

The mean verification accuracies obtained for controlled-
controlled, controlled-sketch, and controlled-low resolution
face verification are 77.20%, 63.86%, and 59.54%, respec-
tively. This showcases the challenging nature of cross-domain
face verification, wherein human performance for low resolu-
tion and sketch face image verification is lower as compared to
same-domain controlled face verification. In order to evaluate
the statistical difference of the results, two-sample t-test was
performed. As compared to controlled-controlled face veri-
fication, results of both cross-domain face verification were
statistically different (p-value < 0.001). While comparing the
results of controlled-sketch and controlled-low resolution face
verification, a p-value of 0.01 was obtained, which corresponds
to statistical difference at a confidence level of 95%. To
understand the effect of familiarity, the percentage of familiar
stimuli across participants is calculated using the familiarity
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TABLE I: Areas of activation observed for (a-c) controlled-
sketch face verification, in comparison to controlled-controlled
verification, and (d-f) controlled-low resolution face verifica-
tion, as compared to controlled-controlled verification. Differ-
ent contrasts are analyzed to understand regions of activation
for specific tasks only. Peak cluster co-ordinates have been
reported.

MNI Coordinates Cluster
Cortical Areas x y z T Value Size

(a) Controlled-sketch > Controlled-controlled
R Superior Frontal Gyrus 28 22 18 5.08 588
R Middle Frontal Gyrus
R Inf. Frontal Gyrus, Tri.
R Middle Cingulate
L Insula -28 34 10 4.50 22
R Thalamus -4 -2 16 4.08 66
R Insula 30 14 -12 3.8 59
R Putamen

(b) Controlled-sketch < Controlled-controlled
R Inferior Occipital Gyrus 28 -88 0 3.61 33
R Fusiform Gyrus
R Calcarine Gyrus
R Middle Occipital Gyrus

(c) Controlled-sketch AND Controlled-controlled
L Inferior Temporal Gyrus -40 -66 -16 5.91 1823
L Fusiform Gyrus
L Superior Occipital Gyrus
L Cuneus
L Calcarine Sulcus
L Inferior Occipital Gyrus
L Lingual Gyrus

(d) Controlled-low resolution > Controlled-controlled
R Insula 30 14 -12 4.05 53
R Middle Frontal Gyrus 26 38 18 3.82 398
R Superior Frontal Gyrus
R Sup. Frontal Gyrus, Med.
R Thalamus 14 -32 14 3.22
R Anterior Cingulate 8 48 12 2.92 13

(e) Controlled-low resolution < Controlled-controlled
L Hippocampus -28 -14 -8 3.55 13
R Inferior Occipital Gyrus 28 -88 0 3.33 14
R Middle Occipital Gyrus
R Calcarine Sulcus
L Inf. Frontal Gyrus, Tri. -46 32 0 2.94 8

(f) Controlled-low resolution AND Controlled-controlled
L Inferior Temporal Gyrus -40 -66 -16 6.48 1707
L Fusiform Gyrus
L Superior Occipital Gyrus
L Lingual Gyrus
L Calcarine Sulcus
L Middle Occipital Gyrus
L Inferior Occipital Gyrus

responses. It is observed that the participants best identified
familiarity with stimuli of controlled-controlled face verifi-
cation (35.37%), followed by controlled-sketch verification
(26.81%) and finally controlled-low resolution face verification
(4.54%). In order to eliminate the bias incurred due to the
familiarity of stimuli, behavioral analysis was also performed
on the unfamiliar stimuli only. A similar trend in accuracies
was observed, where humans performed best on controlled
faces, followed by sketch faces, and low resolution face
images (73.91%, 63.71%, 60.25%), demonstrating statistical
difference at 95% confidence level (p-value < 0.05).

Difference was also observed in the verification accuracy

when participants belonged to the same-ethnicity versus to a
different-ethnicity from the stimulus, while performing low
resolution face verification. For the same-ethnicity stimuli,
the participants obtained a verification accuracy of 67.91%,
whereas different-ethnicity stimuli resulted in a verification
accuracy of 58.00% (p-value < 0.001 for two-sample t-test).
However, a similar difference was not observed for controlled-
sketch face verification, where the same-ethnicity verification
resulted in an accuracy of 68.43%, while the different-ethnicity
verification yielded an accuracy of 69.41% (p-value = 0.9665).
This may be attributed to the fact that sketch face images
primarily contain edge information, therefore encoding little
or no ethnicity information.

IV. NEUROIMAGING RESULTS

A. Verification of Sketch Face Images

In order to understand how humans perform cross-domain
sketch verification differently from controlled face verification,
analysis was performed for different contrasts of controlled-
sketch and controlled-controlled face verification. Table I(a-
c) presents the key areas of activation identified using the
AAL atlas [42] at a p-value < 0.005, uncorrected, labeled
with clusters of brain regions (clusters having less than 5
voxels were ignored). For the contrast [controlled-sketch >
controlled-controlled image verification], larger response was
observed in regions of Right Frontal Gyrus (Superior, Mid-
dle, and Inferior), Right Middle Cingulate Cortex, Bilateral
Insula, Right Thalamus, and Right Putamen (Fig. 2). The
opposite contrast ([controlled-sketch < controlled-controlled
face verification]) revealed greater response in regions of Right
Occipital Gyrus (Inferior, Middle), Right Fusiform Gyrus, and
Right Calcarine Gyrus. In order to further understand the hu-
man behavior while performing face verification, conjunction
analysis was also performed. Table I(c) presents the regions
obtained from the conjunction analysis (contrast: [controlled-
controlled AND controlled-sketch face verification]).

B. Verification of Low Resolution Face Images

Experiments are performed in order to understand the dif-
ferences in brain activity while performing face verification
of low resolution images, as compared to controlled face
verification. Table I(d-f) presents regions of activations ob-
tained under different contrasts of controlled-controlled face
verification and controlled-low resolution face verification for
p-value < 0.005, uncorrected. As before, AAL atlas [42]
was used for performing cluster labeling. It was observed
that the areas of Right Insula, Right Frontal Gyrus (Middle,
Superior), Right Thalamus, and regions of Right Cingulate
Cortex displayed higher activations for low resolution face
verification, as compared to controlled face verification (con-
trast: [controlled-low resolution > controlled-controlled face
verification]). Table I(e) also presents regions of increased
activation for the reverse contrast ([controlled-low resolution
face verification < controlled-controlled face verification]). In
addition, the table reports regions observed while performing
the conjunction analysis on the two tasks as well.
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(a) Controlled-Sketch Verification > Controlled-Controlled Verification

(b) Controlled-Low Resolution Verification > Controlled-Controlled Verifi-
cation

Fig. 2: Peak activations observed while comparing controlled-
sketch verification and controlled-low resolution verification,
with controlled-controlled face verification. Cross-hair points
at the peak activation observed for both the contrasts.

C. Difference between Low Resolution and Sketch Face Veri-
fication Tasks

In order to further understand and evaluate the differences
between the two types of cross-domain face verification tasks,
contrasts between them are also studied. Table II(a-b) presents
the key regions of activation obtained for the contrast of
[controlled-sketch > controlled-low resolution face verifica-
tion], and its opposite. Under p-value < 0.005, uncorrected,
regions such as the Right Middle Frontal Gyrus, Left Cuneus,
and Right Hippocampus show increased activation for sketch
verification, as compared to low resolution face verification
(Fig. 3). On the other hand, regions such as the Left Angular
Gyrus, Left Inferior Parietal gyrus, and Left Postcentral Gyrus
present increased activation for low resolution face verifica-
tion, as compared to sketch face verification.

D. Effect of Ethnicity

Table II(c-d) presents the areas of activation observed when
participants perform same-ethnicity and different-ethnicity
face verification of controlled-low resolution images. The
contrast of [same-ethnicity > different-ethnicity] results in
activation of regions such as Left Inferior Occipital Gyrus,
Left Middle Temporal Gyrus, and Right Middle Occipital
Gyrus, among others. These are obtained for a p-value <0.005,
uncorrected, under cluster labeling. Similarly, [same-ethnicity
< different-ethnicity] illicit higher activation in regions such as
the Left Anterior Cingulate Gyrus, Left and Right Precentral
Gyrus. On the other hand, in case of controlled-sketch face
verification, no regions of activation was observed for the
above mentioned contrasts for an uncorrected p-value < 0.005.
The behavioral results also show a difference of less than 1%
for same and different ethnicity stimulus-participant pairs, for
controlled-sketch face verification.

TABLE II: Areas of activation observed for (a-b) controlled-
low resolution face verification, as compared to controlled-
sketch verification, and (c-d) controlled-low resolution face
verification while the participants performed same-ethnicity or
different-ethnicity face verification. Peak cluster co-ordinates
have been reported.

MNI Coordinates Cluster
Cortical Areas x y z T Value Size

(a) Controlled-sketch > Controlled-low resolution
R Middle Frontal Gyrus 8 -64 -6 7.88 11238
L Cuneus
R Hippocampus
L ParaHippocampal
L Thalamus

(b) Controlled-sketch < Controlled-low resolution
L Angular Gyrus -34 -42 42 6.24 649
L Inferior Parietal Gyrus
L Postcentral Gyrus
L Superior Parietal Gyrus
R Inferior Parietal Gyrus 36 -40 40 5.88 1236
R Middle Occipital Gyrus
R Superior Parietal Gyrus

(c) Same-ethnicity > Different-ethnicity
L Inferior Occipital Gyrus -32 -86 -2 6.42 422
L Middle Temporal Gyrus
R Middle Occipital Gyrus
R Fusiform Gyrus
R Calcarine Sulcus

(d) Same-ethnicity < Different-ethnicity
L Anterior Cingulate Cortex 8 -80 0 10.62 26843
R Precuneus
L Precuneus
L Fusiform Gyrus
R Middle Frontal Gyrus
R Superior Frontal Gyrus

V. DISCUSSION

A. Verification of Sketch Face Images

Sketch faces images, unlike photographs of faces, capture
only the outlines (edges) of facial features, often comprising
primarily of sharp edges or high spatial frequency. Upon
analyzing the regions obtained for the contrast [controlled-
sketch face verification > controlled-controlled face verifica-
tion] (Table I(a)), it was observed that most of these regions
have previously been shown to be responsible for object
processing over face processing [18], [43], as well as complex
matching tasks involving higher visual load [43], [44]. These
findings suggest that humans perceive (high spatial frequency)
sketch face images more as objects, as compared to faces,
and treat sketch face verification as a more complex task as
compared to controlled face verification. Most of the regions
obtained for the reverse contrast ([controlled-controlled >
controlled-sketch] face verification) indicate higher low fre-
quency processing [45], along with higher processing of faces
[18], [46]. This is consistent with the results obtained above,
since sketches contain only high spatial frequency information,
therefore, low frequency processing is expected to be missing
while performing sketch verification. Moreover, as observed,
since sketch face images may be perceived as objects, it was
expected that controlled-sketch face verification would yield
lower activations in face processing regions than controlled-
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(a) Controlled-Sketch > Controlled-Low Resolution Verification

(b) Controlled-Low Resolution > Controlled-Sketch Verification

Fig. 3: Peak activations observed for the contrasts of
controlled-sketch face verification versus controlled-low res-
olution face verification. In both cases, cross-hair points at the
location of peak activation.

controlled face verification. Greater activations were also ob-
served in regions associated with viewing familiar faces [16],
[46]. This is in agreement with the behavioral results obtained
in this study, where we observed 36.31% stimuli familiarity
for controlled face verification, as opposed to 27.75% for
sketch face verification. The regions of activation observed for
the conjunction of these two tasks are primarily responsible
for high frequency processing and face processing [47]–[49].
Combined, the above observations enable us to understand
how humans perform face sketch verification, as compared
to controlled face verification. Face sketch images may be
perceived as objects, activate regions responsible for complex
matching tasks, and present lack of activation in low frequency
processing areas.

B. Verification of Low Resolution Face Images

Table I(d-f) presents the areas of activations obtained for
different contrasts of controlled-controlled and controlled-low
resolution face verification. For the contrast of [controlled-
low resolution face verification > controlled-controlled face
verification], regions of increased activation may primarily
be attributed to object (over face) perception, performance of
complex matching tasks, and visual load [43], [48]. Since low
resolution images contain both low and high frequency infor-
mation, regions pertaining to only a single kind of frequency
processing cannot be expected here. The reverse contrast
of [controlled-controlled face verification > controlled-low
resolution face verification] results in increased activation in
regions of Left Hippocampus, Right Occipital Gyrus, Right
Calcarine Sulcus. The increased activation in Left Hippocam-
pus may be attributed to the percentage of familiarity calcu-
lated above (35.37% for controlled and 4.54% for low reso-
lution face verification) [50], [51]. As observed in literature,
regions of Right Occipital Gyrus (Inferior, Middle), and Right

Calcarine Sulcus may be attributed to upright face recognition
and greater face processing [18], [49]. The increased activation
in face processing related areas for controlled-controlled face
verification as compared to controlled-low resolution face ver-
ification further strengthens the inference that humans perceive
low resolution face images more as objects, or as individual
face components, as opposed to perceiving the face in a holis-
tic manner. Further, the conjunction analysis between these
two tasks revealed activation of areas responsible for both
low and high frequency face processing, along with regions
responsible for decision making. This can be attributed to the
fact that while low resolution images appear blurred, there
exist traces of both low and high frequency facial information.

C. Difference between Low Resolution and Sketch Face Veri-
fication

The analysis between controlled-sketch face verification
and controlled-low resolution face verification (Table II(a-b))
further provides insights into the difference in processing of
these representations. Areas which showed higher activation
for controlled-sketch verification as compared to controlled-
low resolution face verification are primarily responsible for
familiar face processing [50], [51]. On the other hand, re-
gions showing activation for the reverse contrast ([controlled-
low resolution > controlled-sketch verification]) are primarily
responsible for low frequency processing [47], [52].

D. Effect of Ethnicity
The key regions of activation observed for different con-

trasts of same-ethnicity and different-ethnicity face verification
for low resolution face images are given in Table II(c-d).
Face network regions such as the Right Middle Occipital
Gyrus and Right Fusiform Gyrus showed higher activations
for same-ethnicity stimuli as compared to different-ethnicity
stimuli. Similar results have also been observed in literature for
experiments of own-race over other-race face categorization
[23]. These regions have also shown to be responsible for
identity coding and face processing. Similarly, regions of Left
and Right Precuneus have shown significant activation for
the reverse contrast of [different-ethnicity > same-ethnicity].
Regions of Left and Right Precuneus as well as Anterior
Cingulate Cortex have shown higher activations for other-race
faces as compared to own faces [23], [53]. These regions
have shown to be responsible for self versus other processing
and other episodic memory processes [54], [55]. In case
of controlled-sketch face verification, no voxel survived the
uncorrected p-value < 0.005 for cluster labeling. Coupled with
less than 1% difference in verification accuracy of humans
for same-ethnicity and different-ethnicity stimuli for sketch
verification, it can be inferred that processing sketch images
is not highly influenced by ethnicity, likely due to the reduced
ethnic information in the outline-style drawings.

VI. CONCLUSION AND IMPACT ON AUTOMATED FACE
RECOGNITION

This research presents a fMRI study for understanding
the neural responses of the human behavior while perform-
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ing cross-domain face verification. The study has been con-
ducted across two ethnic groups and two cross-domain rep-
resentations, namely, sketch to digital image matching and
cross-resolution face matching. Comprehensive behavioral and
neuro-imaging based results have been provided to draw anal-
ysis on the human behavior. It can be observed that as com-
pared to controlled face verification, humans perform the task
of face verification differently when comparing face images
belonging to varying domains. Sketch face verification results
in more activation of areas responsible for high frequency
processing and complex matching tasks. Similarly, difference
in processing was observed for controlled-low resolution face
images, where higher activations were observed in areas of
high visual load and complex matching task. Analysis has also
been performed to understand the effect of same or different
ethnicity of the stimulus while performing verification under
varying face representations. Owing to the reduced ethnicity
details in sketch images, no difference in brain processing was
observed for high frequency sketch images related to ethnic-
ity. However, significant difference in activation of different
regions was observed for low resolution face verification, for
varying ethnicity.

While recent research has focused on (i) learning repre-
sentations for fMRI data [56]–[58], and (ii) on developing
automated same-domain [59], [60] or cross-domain facial
recognition systems [61]–[63], limited research has focused
on understanding the human behavior while performing cross-
domain face verification. To this effect, we believe that the
current study extends the existing pool of literature by provid-
ing novel insights into the working of the human brain, thus
facilitating researchers to develop brain-inspired algorithms.
The variations observed while matching different face rep-
resentations (sketch or low-resolution) provides better under-
standing of the salient features used by the human brain during
matching. Such insights can thus enable the development of
a stronger, more accurate, and more robust face recognition
system, capable of matching across domains as well. While in
this research we have tried to control the variations observed in
different stimuli, there may still be some confounding factors
that are not modeled, such as the difficulty level. As part of the
future work, we intend to extend this research to understand
the effect of different difficulty levels and more unconstrained
stimuli for cross-domain face verification.
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